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About This Course

These are typed notes from a seminar led by Andrey Smirnov on Equivariant Cohomology
and Quiver Varieties. Each week was a lecture given by one of the graduate students of the
seminar on a topic regarding this area. I’ve typed up my written notes from the seminar, and
any mistakes here are mine and not the speakers.
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1 1/24: Intro to Cohomology

Consider a chain complex
· · · → Cn+1 → Cn → Cn−1 → · · ·

Where ∂ : Ci+1 → Ci. Define C∗n = Hom(Cn, G) for some group G of coefficients. Then δ : C∗n−1 →
C∗n

Definition.
Hn(C,G) = ker(δ)/im(δ)

Definition. The cohomology ring is defined to be

H∗(X,R) =
⊕
n∈Z

Hn(X,R)

Lets see some examples of computations:

Example. If X={pt}, then σ : ∆0 → X maps {0} 7→ {x}, then

Hi(X) =

{
Z i = 0

0 else

So

Hi(X) = Hom(Hi(X),Z) =

{
Z i = 0

0 else

A general idea to keep in mind is that for any topological space X, to compute Hi(X) we always
triangulate into simplices: A face is a 2-dim simplex, a line is a 1-dim simplex, and a point is a
0-dim simplex. From these simplices we form vector spaces that make up our chain complex:

C2 is the vector space (say over C) with basis of 2-dim simplices, C1 is the complex vector space
with basis given by 1-dim simplices, and C0 is the vector space given by 0-dim simplices. There
could be more, but if we’re working with a 2-dim topological manifold, this is all we have.

Example. To compute the boundary operator of, say, a 2-simplex we need to orient and label the
vertices and edges. Say we have the following 2-simplex: INSERT PICTURE HERE!!!!!!!!!!!!

If we call this simplex ∆, then computing the boundary operator is straight forward: We simply
add up all the 1-simplices corresponding to their correct orientation:

∂(∆) = [b, c] + [c, a] + [a, b]

Where each of these [b, c], [c, a], [a, b] ∈ C1, and as oriented simplices we have to remind ourselves
that [b, c] = −[c, b]

We can sup up this example to higher dimensional simplices: [a, b, c] represents an oriented
2-simplex, maybe a triangle with vertices {a,b,c}, [a, b, c, d] represents an oriented 3-dimensional
simplex with oriented vertices, INSERT PICTURES!!!!!!!!!!!!!!!!!!
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In general we have the formula:

∂[i1, i2, ..., in] =

n∑
k=1

(−1)k[i1, i2, ..,��ik, .., in]

Where ��ik means remove the ithk entry.

Example. If we know that
∂[a, b, c] = −[b, c] + [a, c]− [a, b]

What is is corresponding 2-simplex that this represents? INSERT PICTURE!!!!!!!!!!!!!!!!!!!

Example. Lets look at some well-defined topological spaces. First S1. Here is a certain triangula-
tion of the circle: INSERT PICTURE!!!!!!!!!!!!!!!

What are the Ci’s in this case? S1 is 1-dimensional so Ci for i ≥ 2 and i ≤ −1 are all 0. In the
above triangulation we have 3 “vertices” and 3 “edges” so C1 and C0 are both 3 dimensional. This
means C1 = C3 and C0 = C3 where C1 = C3([a, b], [b, c], [c, a]) and C0 = C3(a, b, c).

The main point of all this is that homology and cohomology are topological INVARIANTS.
Meaning the choice of triangulation doesn’t matter. Let’s now compute the chain complex, and
boundary maps explicitly1

∂[a, b] = −b+ a

∂[b, c] = −c+ b

∂[c, a] = −a+ c

As a result we have the following chain complex:

0→ C3 → C3 → 0

Where the first map is ∂0, the second is ∂1, and ∂1 has a matrix representation (if we choose basis
[a,b], [b,c],[c,a]) as follows:  1 0 −1

−1 1 0
0 −1 1


From this we compute the homology of this space:

H1 = ker ∂1/im ∂0 = C/{0} ' C

H2 = ker ∂2/im ∂1 = C3/C2 ' C
Notice further that in the circle we could choose the “trivial” triangulation consisting of a single
point and 1 line. If we call this point “a” then the chain complex is

C0 = C→ C = C1

and the differential map is trivial since ∂ = a− a = 0

This just goes to show why we call homology and cohomology INVARIANTS, the choice of
triangulation doesn’t matter.

1Andrey asks “You guys know linear algebra?”
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Example. Consider the space S2 ' CP1

One example of a triangulation is to remove the north pole (NP) and consider the chain complex
C2 = C, C0 = {NP}. Then we get

0→ C→ 0→ C→ 0

We can notice immediately that we can read off the homology groups: H0 = C, H2 = C

In general to compute projective space, over the reals or complex numbers is done in this fashion.
Let’s describe this space geometrically with some pretty pictures.

Example. RP1 = lines in R2 ' S2

INSERT PICTURE!!!!!!!!!!!!!!!!11

Example. RP2 = lines in R3

INSERT PICTURE!!!!!!!!!!!!!!!!11

Example. RP3

INSERT PICTURE!!!!!!!!!!!!!!!!11

2 1/31: Examples of Cohomology of Pn and Gr(k, n)

Lets explicitly describe CPn. This manifold is equivalence classes of lines:

CPn = {[z0, z1, ..., zn] : (z0, ..., zn) 6= 0, zi ∈ C}

We can choose a decomposition of this space as follows

3 2/21: Finishing up Grassmannian and Starting Equivari-
ant Cohomology

4 2/28: Equivariant Cohomology of P1,P2

The action of (C×)2 on P1 is given by

(t1, t2) · [z0 : z1] = [t1z0 : t2z1].

Let us consider the case when [z0 : z1] 6= [1 : 0]. Then, z0 6= 0 or z1 6= 0. If z0 6= 0, we can set
t1 = 1 and t2 = z1/z0 to obtain

(t1, t2) · [z0 : z1] = [t1z0 : t2z1] = [z0 : z1 · z1/z0] = [z20/z1 : z1].

Similarly, if z1 6= 0, we can set t1 = z0/z1 and t2 = 1 to obtain

(t1, t2) · [z0 : z1] = [t1z0 : t2z1] = [z0 · z0/z1 : z1] = [z0 : z21/z0].

Therefore, the (C×)2-orbit of [z0 : z1] in P1 is either [z0 : z21/z0] or [z20/z1 : z1] if [z0 : z1] 6= [1 : 0].
The orbit of [1 : 0] is just the fixed point [1 : 0] itself.
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In summary, the orbits of the action of (C×)2 on P1 are

[1 : 0], [z0 : z21/z0], [z20/z1 : z1]

for [z0 : z1] 6= [1 : 0].

for (t1, t2) ∈ (C×)2.
The one-dimensional orbits of the action of (C×)2 on P1 are the orbits of points that are not

fixed by the action. The only fixed point is [1 : 0], so we only need to consider the one-dimensional
orbits of points of the form [z0 : z1] with z0 6= 0 and z1 6= 0.

Let [z0 : z1] be a point of P1 with z0 6= 0 and z1 6= 0. The orbit of [z0 : z1] under the action of
(C×)2 is given by

Therefore, the one-dimensional orbit of [z0 : z1] is given by the set of all points of the form
[λz0 : z1] for λ ∈ C×. Since the projective line P1 is compact, the orbit of any point is a closed
subset of P1, and the one-dimensional orbit of [z0 : z1] is precisely the projective line passing through
[z0 : z1] and [1 : 0]. Therefore, there is one one-dimensional orbit for each point [z0 : z1] with z0 6= 0
and z1 6= 0.

In summary, the one-dimensional orbits of the action of (C×)2 on P1 are precisely the projective
lines passing through the point [1 : 0] and each point [z0 : z1] with z0 6= 0 and z1 6= 0 in P1.

5 3/7: Equivariant Cohomology of Pn, Grassmannians, Flag
Varieties

6 3/28: Equivariant Integration

Say we have a torus acting on a variety T = (C×)n y X, with the set of fixed points being finite:
|XT | <∞. If we take an equivariant cohomology class ω ∈ H∗T (X) the formula for integration over
X is as follows: ∫

X

ω =
∑

p∈XT

ω|p
e(TpX)

Where ω|p ∈ H∗T (pt) = C[u1, ..., un], and e(TpX) is the Euler class of the tangent space to p.

We need to explain a bit about the Euler class. T gives an action on TpX which is a represen-
tation of the torus. At each fixed point, we have various weights of TpX, and in a neighborhood of
TpX the character at p of TpX is the sum of directions of repelling/attracting characters

INSERT PICTURE!!!!!!!!!!!!!!!!!!!!!!!!!!

I.e. if our torus action has coordinates α1, ..., αdimX , then charp(TpX) = α1 + · · ·+αdimX is the
character of the action at the fixed point (a sum of weights)

Example. For the action of (C×)2 y C2 gotten by scaling the coordinate vectors by u1, u2

INSERT PICTURE!!!!!!!!!!!!!!!!!!!!!!!!!!

Then the character at the unique fixed point 0 is u1, u2

5



From here we define the Euler class to be the product of characters:

e(TpX) =

dimX∏
i=1

αi

Example. ∫
P1

c1 = 1

Here we consider the variety P1 = P(C2) which is topologically a 2-sphere, where C2 an action
of the 2-dimensional torus with weights u1, u2:

C×u1
× C×u2

y C2

Gotten by scaling the coordinates.

There are two fixed points of this action: The north pole and the south pole as we act via
rotation. At the north pole, the character of the tangent space TNP1 is given by u1 − u2, and as
this is only a 1-dimensional thing, we only have 1-character, so this is the same as the Euler class
(nothing else to multiply by):

charN (TNP1) = u1 − u2 = e(TNP1)

Similarly at the south pole,
charS(TSP1) = u2 − u1 = e(TSP1)

Finally, the last thing to do is look at the restriction of the first chern class to these fixed points:
But here we just have that c1|N = u1 and c1|S = u2 (we’ll explain below why this is true). As
such we have ∫

P1

c1 =
c1|N

e(TNP1)
+

c1|S
e(TSP1)

=
u1

u1 − u2
+

u2
u2 − u1

= 1

Let’s explain a bit more about these chern classes.

Assume we have a rank k vector bundle over X, p : V → X, so over each point in X we have a
Ck vector space. Then the chern classes here are elements in the cohomology of X:

c1, c2, ..., ck ∈ H∗(X)

With the key property that restriction commutes with taking chern classes. This means that we
have the following commutative diagram

Bundle Chern Class

Restrict to Y Restrict to Y
Chern class
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Meaning that if we first send our bundle to its chern class, then restrict to Y , we get the same
output as first restricting to Y , and then taking a chern class.

For us, this means that
c1|p = c1(O(1)p) = char(O(1)p)

Where O(1)p is the fiber and a representation of T , of the hyperplane bundle (dual to the tautological
bundle). The fiber of the tautological bundle over N/S are coordinate lines, so the characters are
just u1, u2 (whenever we write c1 we always mean c1 of O(1), and c1(O(1)) = −c1(O(−1)))

Example.
H∗T (Pn−1) = C[c1, u1, ..., un]/relations

So the question is what relations? We need to quotient by an ideal, and in particular the ideal of
relations should be all possible polynomials that reduce at every fixed point. So this means that we
have

c1|p = ui

I.e. the fiber over the ith fixed point is the ith coordinate line scaled by ui. The relations dictate
that we need to quotient by the ideal generated by (c1− u1)(c1− u2) · · · (c1− un). Notice that if we
sent ui to 0 we would recover the ordinary cohomology:

H∗(Pn−1) = C[c]/(cn)

7 4/–: Equivariant Integration/27 Lines

8 4/–: Nakajima Quiver Varieties
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